Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 208: 105-125, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35300999

RESUMO

Late in 2019, SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) emerged, causing an unknown type of pneumonia today called coronaviruses disease 2019 (COVID-19). COVID-19 is still an ongoing global outbreak that has claimed and threatened many lives worldwide. Along with the fastest vaccine developed in history to fight SARS-CoV-2 came a critical problem, SARS-CoV-2. These new variants are a result of the accumulation of mutations in the sequence and structure of spike (S) glycoprotein, which is by far the most critical protein for SARS-CoV-2 to recognize cells and escape the immune system, in addition to playing a role in SARS-CoV-2 infection, pathogenicity, transmission, and evolution. In this review, we discuss mutation of S protein and how these mutations have led to new variants that are usually more transmissible and can thus mitigate the immunity produced by vaccination. Here, analysis of S protein sequences and structures from variants point out the mutations among them, how they emerge, and the behavior of S protein from each variant. This review brings details in an understandable way about how the variants of SARS-CoV-2 are a result of mutations in S protein, making them more transmissible and even more aggressive than their relatives.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Glicoproteínas/genética , Humanos , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Reprod Sci ; 28(6): 1709-1717, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33721296

RESUMO

The development of culture systems capable of maintaining follicular growth since the preantral stage has been the target of investigations. Mesenchymal stem cells (MSC) present potential for use in a wide range of applications, including research aimed at preserving fertility. Therefore, this study investigated the use of caprine Wharton's Jelly Mesenchymal Stem Cells (WJMSC) on the survival and in vitro development of goat preantral follicles enclosed in ovarian fragments cultured for 1 or 7 days. Fragments of the ovarian cortex were immediately fixed (non-cultured control) or distributed in four treatments: ovarian tissue cultured in control medium (α-MEM+); ovarian tissue cultured in α-MEM+ supplemented with FBS (α-MEM+ + FBS); ovarian tissue co-cultured with stem cells in α-MEM+ (α-MEM+ + SC); and ovarian tissue co-cultured with stem cell in α-MEM+ + FBS (α-MEM+ + SC + FBS). The rates of cell proliferation, follicular survival, and activation, as well as follicular diameter, were evaluated. After 7 days, the treatment co-cultured with stem cells showed a higher (P < 0.05) percentage of morphologically normal preantral follicles compared to the other treatments, as well as a higher (P < 0.05) activation rate compared to cultured control. Moreover, the follicular diameter was higher (P < 0.05) in the treatment co-cultured with stem cells compared to co-cultured with stem cells plus FBS. This study demonstrates for the first time that in vitro co-culture of caprine WJMSC with preantral follicles enclosed in goat ovarian tissue improves activation and early follicular development.


Assuntos
Cabras/fisiologia , Células-Tronco Mesenquimais/fisiologia , Folículo Ovariano/fisiologia , Ovário/fisiologia , Animais , Proliferação de Células , Sobrevivência Celular , Técnicas de Cocultura , Meios de Cultura , Feminino , Oócitos/fisiologia , Folículo Ovariano/crescimento & desenvolvimento , Soroalbumina Bovina
3.
Anim Reprod Sci ; 215: 106310, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32216933

RESUMO

An appropriate implantation site favors angiogenesis and avoids ovarian tissue damage after tissue grafting. The objective of this study was to evaluate the effects of intramuscular (IM) and subcutaneous (SC) sites for ovarian grafts in goats by evaluating follicular morphology and activation, preantral follicle and stromal cell densities, tissue DNA fragmentation, collagen types I and III depositions, and graft revascularizations. Ovarian cortical tissue was transplanted in IM or SC sites and recovered 7 or 15 days post-transplantation. There was a greater percentage of developing follicles and lesser follicular and stromal cell densities in all grafted tissues as compared to ovarian tissues of the control group. The stromal cell density and percentage of normal follicles were positively associated. At 15 days post-transplantation, tissues at the SC and IM sites had similar amounts of DNA fragmentation and type III collagen content. In contrast, tissues at the SC, as compared with IM site, had greater abundances of collagen type I. Furthermore, there was a positive association between collagen type I and percentage of morphologically normal follicles post-transplantation. In addition to a marked decrease in follicular density 15 days post-transplantation in ovarian grafts at the SC and IM sites, low percentages of normal follicles and follicular activation were observed similarly in both transplantation sites. There were also positive associations of stromal cell density and abundance of type I collagen fibers with the percentage of intact follicles in grafted ovarian tissues.


Assuntos
Cabras , Folículo Ovariano/fisiologia , Ovário/transplante , Preservação de Tecido/veterinária , Animais , Fragmentação do DNA , Feminino , Músculo Esquelético , Ovário/citologia , Tela Subcutânea , Preservação de Tecido/métodos
4.
Reprod Biol ; 19(3): 270-278, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31466906

RESUMO

The present study evaluated the effect of the addition of antioxidants anethole (AN) and robinin (RO) in the vitrification solution, and the in vitro incubation (IVI) medium of ovine ovarian tissue. Ovarian fragments were vitrified without antioxidant (VWA) or with different concentrations of AN (30, 300 and 2000 µg/mL) or RO (0.125, 0.25 and 0.50 mg/mL), followed by IVI (24 h). Histological analyses showed that the percentage of morphologically normal preantral follicles (MNPF) in AN 2000 did not differ from RO 0.125 or fresh ovarian tissue (CTR). Subsequently, ovarian fragments were vitrified in the presence of AN 2000 and RO 0.125 followed by IVI without or with (AN 2000+ and RO 0.125+) the same antioxidants. The follicular activation in all treatments was significantly increased as compared to the CTR. The stroma cell density (SCD) in all the vitrified fragments was significantly lower than the CTR. However, in the AN 2000 and RO 0.125 this parameter was significantly higher when compared to the VWA. The reactive oxygen species (ROS) in the ovarian cortex of the AN 2000 or AN 2000+ were significantly reduced in comparison with the CTR while the intracellular ROS levels of AN 2000 and CTR were similar. The total antioxidant capacity (TAC) in RO 0.125 was significantly higher than that of VWA, AN 2000 and AN 2000+. According to the results, the use of antioxidants (AN or RO) only in the vitrification solution of ovine ovarian tissue is recommended, due to their better preservation of the SCD. Moreover, AN 2000 best maintains the follicular morphology, while RO 0.125 has a high TAC.


Assuntos
Antioxidantes/metabolismo , Criopreservação/veterinária , Ovário/efeitos dos fármacos , Ovinos , Preservação de Tecido/veterinária , Animais , Criopreservação/métodos , Meios de Cultura , Feminino , Espécies Reativas de Oxigênio/metabolismo , Vitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...